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By means of the Weiss–Tabor–Carnevale (WTC) truncation method and the general
variable separation approach (GVSA), analytical investigation of the integrable (2 + 1)-
dimensional higher-order Broer–Kaup (HBK) system shows, due to the possibility of
selecting three arbitrary functions, the existence of interacting coherent excitations
such as dromions, solitons, periodic solitons, etc. The interaction between some of the
localized solutions are elastic because they pass through each other and preserve their
shapes and velocities, the only change being the phase shift. However, as for some
soliton models, completely non-elastic interactions have been found in this model.
These non-elastic interactions are characterized by the fact that, at a specific time, one
soliton may fission to two or more solitons; or on the contrary, two or more solitons
will fuse to one soliton.

KEY WORDS: Fission; fusion; localized structures; (2 + 1)-Dimensional Higher
Order Broer-Kaup System; non-elastic interactions; general variable separation
approach; variable separation approach.

1. INTRODUCTION

Much work has been done over the last year on the subject of obtaining special
solutions of the nonlinear partial differential equations (NLPDEs), which govern
many dynamic problems in physics and other fields. Due to its wide applications
in mathematics, physics, chemistry, biology, communications, astrophysics and
geophysics, the soliton theory plays a key role in this study. In the soliton theory,
how to obtain these exact solutions of the NLPDEs is important. There are many
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powerful methods developed to solve the NLPDEs such as the inverse scattering
transformation (Gardner et al., 1976), the Hirota bilinear form (Hirota, 1971),
the symmetric reduction (Olver, 1986), the Bäcklund transformation (Konno and
Wadati, 1975; Lamb, 1974; Wadati and Toda, 1972; Wahlquist and Estabrook,
1973) and the Darboux transformation (Gu et al., 1999; Matveev and Salle, 1991;
Rogers and Schief, 2002; Wadati et al., 1975), the formal (Lou and Chen, 1999)
and non-formal (Lou, 2000, 2002; Lou and Lu, 1996; Lou and Ruan, 2001; Tang
et al., 2002) variable separation methods, etc.

If the soliton structures and properties of the (1 + 1)-dimensional integrable
NLPDEs are now understood very well, the study of higher-order dimensional
soliton effects is still in its infancy, and continues to attract much attention. For
example, the interactions between soliton solutions of (1 + 1)-dimensional inte-
grable models are usually considered to be completely elastic. However, it has been
found that for some (2 + 1)-dimensional soliton models, completely non-elastic
interactions may occur when specific conditions between the wave vectors and
the velocities are satisfied. For instance at a specific time, one soliton may fission
to two or more solitons, or on contrarily, two or more solitons may fusion to one
soliton. These two types of phenomena are soliton fission and soliton fusion re-
spectively. The same phenomena were also reported in case of (1 + 1)-dimensional
models (Wang et al., 2004).

Lin and Qian (2003) investigated the integrable (2 + 1)-dimensional higher-
order Broer–Kaup (HBK) system (Lin and Li, 2002). They successfully extended
the general variable separation approach (GVSA) to this system of equations
and obtained as results that the behaviours of the interactions for the compacton
solutions are not completely elastic for some types of them and completely elastic
for some others. They also found completely elastic interaction between three
solitonic excitations. Li et al. (2004) starting from the Bäcklund transformation
and using the Cole–Hopf transformation, they reduced the integrable (2 + 1)-
dimensional HBK system to a simple linear evolution equation with two arbitrary
functions of {x, t} and {y, t}. They found out some special solutions of this system
of equations, by choosing the Lou’s variable separation approach (VSA). As we
know that soliton supplies good applied prospects in many fields of natural science,
and the interactive property of soliton plays important role in developing of many
applications. Therefore, the study of this interactive property for the integrable
models is more significant.

In this paper, based on the Weiss–Tabor–Carnevale (WTC) truncation method
and the GVSA, we will present another features of the following integrable (2 + 1)-
dimensional HBK system

ut + 4(uxx + u3 − 3uux + 3uw)xy + 12(uv)xx = 0, (1)

vt + 4(vxx + 3vu2 + 3uvx + 3vw)x = 0, (2)

vx − wy = 0, (3)
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which was first obtained from the inner parameter dependent symmetry constraints
of the KP equation (Lou and Hu, 1997). When we take x = y, the system (1)–(3) is
reduced to the usual (1 + 1)-dimensional HBK system. Lin (Lin and Li, 2002) has
proved that the (2 + 1)-dimensional HBK system possesses the Painlevé Property.
Many significant results have obtained in Lin and Qian (2003) and Lin and Li
(2002). However, system (1)–(3) possesses many interesting localized structures,
which have not yet revealed such as soliton fusion and soliton fission.

The outline of the paper is as follows. In Section 2, a summary of the
troncature of Painlevé is given. In Section 3, a general solution including three
arbitrary functions is obtained for system (1)–(3) by means of WTC truncation
method and GVSA. By choosing appropriately these arbitrary functions, we study
interaction properties of solitons. Some conclusion and discussion are given in the
last section.

2. SUMMARY OF THE TRONCATURE OF THE
PAINLEVÉ EXPANSION

It is interesting to see that let the following special solution,

v = uy, w = ux (4)

the system (1)–(3) is decoupled into

{ut + 4(uxx + u3 + 3uux)x}y = 0. (5)

Then following the idea of WTC (Weiss et al., 1983), we begin with the Painlevé
expansion of Eq. (5) truncated at the constant term

u = ϕ−1u0 + u1, (6)

where ϕ ≡ ϕ(x, y, t) is the singular manifold variable, u0 and u1 the functions
of arguments x, y and t. The substitution of (6) into (5) leads to six equations
depending of the different powers of ϕ. At the power ϕ−5 the following results

u0 = ϕx, (7)

and

u0 = 2ϕx, (8)

are obtained, while, at the power ϕ0, we have

{
u1t + 4

(
u1xx + u3

1 + 3u1u1x

)
x

}
y

= 0. (9)
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By choosing u1 ≡ u1(x, t), Eq. (9) is satisfied automatically. After that, using (7)
into the four remaining equations, the following results are obtained




ϕ−3 : 2ϕxϕy

{
ϕt + 12

(
u2

1 + u1x

)
ϕx + 12u1ϕxx + 4ϕxxx

} = 0,

ϕ−2 : ϕx

{
ϕt + 12

(
u2

1 + u1x

)
ϕx + 12u1ϕxx + 4ϕxxx

}
y

+ϕy

{
ϕt + 12

(
u2

1 + u1x

)
ϕx + 12u1ϕxx + 4ϕxxx

}
x

+ϕxy

{
ϕt + 12

(
u2

1 + u1x

)
ϕx + 12u1ϕxx + 4ϕxxx

} = 0,

ϕ−1 :
{
ϕt + 12

(
u2

1 + u1x

)
ϕx + 12u1ϕxx + 4ϕxxx

}
xy

= 0.

(10)

We have found that the equation obtained at the power ϕ−4 is identically satisfied.
Analysing the system mentioned earlier, we find that all equations in this

system are satisfied automatically under the conditions of

ϕt + 12
(
u2

1 + u1x

)
ϕx + 12u1ϕxx + 4ϕxxx = 0. (11)

As for the case u0 = 2ϕx, no new meaningful results can be obtained through
similar analyses.

3. GENERAL SOLUTIONS OF THE INTEGRABLE (2 + 1)-
DIMENSIONAL HBK SYSTEM

About the linear equation (11) of the system (1)–(3), we can construct many
types of special solutions. Because u1(x, t) is undetermined function of variable
x and t , we can select after a careful analysis, an appropriate variable separation
hypothesis for the function ϕ as follows

ϕ(x, y, t) = f (x, t)g(y) + h(y), (12)

where f, g and h are arbitrary functions of indicated variables. Inserting (12) into
(11), we have the following variable separated equation

ft + 12
(
u2

1 + u1x

)
fx + 12u1fxx + 4fxxx = 0. (13)

Substituting Eq. (12) into Eqs. (4) and (6) along with (7), we obtain a general
excitation of the integrable (2 + 1)-dimensional HBK system

u = fxg

fg + h
+ u1, (14)

v = fx(gyh − ghy)

(fg + h)2
, (15)

w = g
{
fxx(fg + h) − f 2

x g
}

(fg + h)2
+ u1x, (16)
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with four arbitrary functions f(x, t), g(y), h(y) and u1(x, t).
Since u1(x, t) is arbitrary seed solution and f(x, t) is arbitrary function, it

should be important to check at each step of the resolution that for a selected
function of f(x, t), that the equation satisfied by u1(x, t) by substituting this function
in (12), can be really solved.

Because of the arbitrariness of the functions f, g and h appearing in Eq. (15),
the potential v possesses quite rich coherent structures.

3.1. Exact Solution Derived from the Trivial Solution u1(x, t) = 0

If we take the trivial solution u1(x, t) = 0 into Eq. (13), then we can solve
the obtained equation as

f (x, t) = exp(kx − 4k3t). (17)

By choosing g(y) = exp(l1y) and h(y) = exp(l2y), the potential field v can be
written as

v = k(l1 − l2) exp(kx − 4k3t)exp(l1 + l2)y

{exp(kx − 4k3t)exp(l1y) + exp(l2y)}2
, (18)

where l1, l2 and k are arbitrary constants.

3.2. Exact Solitary Wave Solutions

Due to the complexity of Eq. (13), we find through our study that there
is neither solution of the type of Jacobi elliptic function, nor solution of secant
hyperbolic function for f.

By selecting the following solution for f

f (x, t) = a tanh (kx − ωt) + b, (19)

where a, b, k and ω are constants to be determined later. Inserting (19) into (13)
and solving the equation obtained for u1(x, t), leads to

u1(x, t) = k tanh(kx − ωt), (20)

and

u1(x, t) = 2k tanh(kx − ωt), (21)

the dispersion relation between ω and k for these two solutions are

ω = 4k3, (22)

ω = 16k3, (23)

respectively, where a, b and k are arbitrary constants. Without loss of generality,
we will choose a = 1, b = 0.
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Therefore, when the conditions (19)–(23) hold, we can have the following
solitary wave solutions for the potential field v.

Case 1. g = tanh(l1y), h = tanh(l2y) + A.

v = k sech2(kx − ωt){l1 sech2(l1y)(tanh(l2y) + A) − l2 sech2(l2y) tanh(l1y)}
{tanh(kx − ωt) tanh(l1y) + tanh(l2y) + A}2

(24)
Case 2. g = sech(l1y), h = tanh(l2y) + A,

v = k sech2(kx − ωt){−l1 sech(l1y) tanh(l1y)(tanh(l2y) + A) − l2 sech2(l2y) sech(l1y)}
{tanh(kx − ωt) sech(l1y) + tanh(l2y) + A}2 ,

(25)
Case 3. g = tanh(l1y), h = sech(l2y) + A,

v = k sech2(kx − ωt)
{
l1 sech2(l1y)(sech(l2y) + A) − (−l2 sech(l2y) tanh(l2y)) tanh(l1y)

}
{tanh(kx − ωt) tanh(l1y) + sech(l2y) + A}2

,

(26)
Case 4. g = sech(l1y), h = sech(l2y) + A,

v = k sech2(kx − ωt){−l1 sech(l1y) tanh(l1y)(sech(l2y) + A) − (−l2 sech(l2y) tanh(l2y)) sech(l1y)}
{tanh(kx − ωt) sech(l1y) + sech(l2y) + A}2

,

(27)

where A, l1 and l2 are arbitrary constants.
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Fig. 1. The graph of the potential field v for the coherent structure
(18) obtained for the given values, k = 1, l1 = 1, l2 = 2.
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Fig. 2. The steps of the fission of the solitonic excitation for the potential field v given by
solution (31).
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Fig. 3. Completely elastic interaction between two dromion solutions for the potential field v
expressed by (32).

3.3. Exact Solutions Leading to Interaction of Waves

As for the interaction of the wave solutions, a hypothesis is adopted. Namely,
just suppose

f (x, t) = a tanh (k1x − ω1t) + b tanh (k2x − ω2t) + c, (28)
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Fig. 4. Two-solitonic excitations fusion for the potential field v given by (33).

where a, b, c, k1, k2, ω1 and ω2 are constants to be determined later. Inserting (28)
into (13) and solving the equation obtained for u1(x, t), leads to

u1(x, t) = k1 tanh (k1x − ω1t) + k2 tanh (k2x − ω2t), (29)

with the dispersion relation

ω1 = 4k1
(
k2

1 + 3k2
2

)
, ω2 = 4k2

(
k2

2 + 3k2
1

)
, (30)

where a, b, c, k1 and k2 are arbitrary constants. In what follows, we may choose
without loss of generality a = 1, b = 2 and c = 0

When the conditions (28)–(30) are satisfied, the potential v can be obtained
by the following selection of the functions g(y) and h(y).

Case 1. g = tanh(l1y), h = tanh(l2y) + A. From Eq. (15), we have

v =
(k1 sech2(k1x − ω1t) + 2k2 sech2(k2x − ω2t))

× {l1 sech2(l1y)(tanh(l2y) + A) − l2 sech2(l2y) tanh(l1y)}
{(tanh(k1x − ω1t) + 2 tanh(k2x − ω2t)) tanh(l1y) + tanh(l2y) + A}2

.

(31)
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Fig. 5. The evolution of y-periodic solitons (35).

Case 2. g = sech(l1y), h = tanh(l2y) + A. Other new soliton excitation solution
of Eq. (15) is given by

v =
(k1 sech2(k1x − ω1t) + 2k2 sech2(k2x − ω2t))

× {−l1 sech(l1y) tanh(l1y)(tanh(l2y) + A) − l2 sech2(l2y) sech(l1y)}
{(tanh(k1x − ω1t) + 2 tanh(k2x − ω2t)) sech(l1y) + tanh(l2y) + A}2

.

(32)
Case 3. g = tanh(l1y), h = sech(l2y) + A. From Eq. (15), we have

v =
(k1 sech2(k1x − ω1t) + 2k2 sech2(k2x − ω2t))

× {l1 sech2(l1y)(sech(l2y) + A) − (−l2 sech(l2y) tanh(l2y)) tanh(l1y)}
{(tanh(k1x − ω1t) + 2 tanh(k2x − ω2t)) tanh(l1y) + sech(l2y) + A}2

.

(33)
Case 4. g = sech(l1y), h = sech(l2y) + A. Other new type of solution for the

potential (15) is

v =
(k1 sech2(k1x − ω1t) + 2k2 sech2(k2x − ω2t)){−l1 sech(l1y)

× tanh(l1y)(sech(l2y) + A) − (−l2 sech(l2y) tanh(l2y)) sech(l1y)}
{(tanh(k1x − ω1t) + 2 tanh(k2x − ω2t)) sech(l1y) + sech(l2y) + A}2

.

(34)
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Fig. 6. Steps of the fusion of solitonic excitations for the potential field v expressed by (31).
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Fig. 7. The evolution of the dromion excitations of potential field v expressed by (32).

Other class of solutions can be obtained under the following choice of the
functions g(y) and h(y).

Case 5. g = cos(l1y), h = cos(l2y) + A,
Case 6. g = sech(l1y), h = cos(l2y) + A,
Case 7. g = cos(l1y), h = sech(l2y) + A,
Case 8. g = tanh(l1y), h = cos(l2y) + A,
Case 9. g = cos(l1y), h = tanh(l2y) + A.
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Fig. 8. The evolution of the two-solitonic excitations of potential field v given by (33).

If we take for example case 5, we can write down explicitly the following form of
solution for the potential v

v =
(k1 sech2(k1x − ω1t) + 2k2 sech2(k2x − ω2t))

×{−l1 sin(l1y)(cos(l2y) + A) − (−l2 sin(l2y)) cos(l1y)}
{(tanh(k1x − ω1t) + 2 tanh(k2x − ω2t)) cos(l1y) + cos(l2y) + A}2

. (35)
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Fig. 9. Steps of the fission of solitonic excitations of potential field v expressed by (31).
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From Fig. 1 we see that it approaches to zero at all directions except two special
directions. This behaviour is quite close to that of the solitoff which usually
approaches to zero at all directions except a special direction.

Figures 2–5 show the detail on the interaction property of the solitonic exci-
tations obtained for the potential field v (15), when selecting the parameter values
k1 = 2, l1 = 1, k2 = 1, l2 = 2 and A = 4, and the corresponding time is indicated
on these figures.

Figures 6–8 are obtained for the parameters values k1 = −2, l1 = 1, k2 = 1,
l2 = 2 and A = 4, and the corresponding time is indicated on these figures.

Figure 9 is obtained for the selected values k1 = 2, l1 = 1, k2 = −1, l2 = 2
and A = 4.

4. CONCLUSION

We have sought analytically solutions for the integrable (2 + 1)-dimensional
HBK system by means of the WTC truncation and the general variable sepa-
ration approach. By selecting the three arbitrary functions which appear in the
solution, we have studied numerically the interaction properties of the localized
solutions (dromions, solitons, periodic solitons) moving with different velocities.
We have found some interactions completely elastic, i.e. the solitonic excitations
pass through each other and preserve their shapes and velocities, the only change
being the phase shift. We have also found during the interaction; on the one hand
that several solitons have fused to one, on the other hand, on the contrary, one
single soliton has fission into several solitons. These fusion and fission phenomena
have not yet reported before on the integrable (2 + 1)-dimensional HBK system.
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